An Introduction to Hyperstationary Sets

Joan Bagaria

Winter School in Abstract Analysis 2017 section Set Theory & Topology Hejnice, Czech Republic, Jan 28 - Feb 4, 2017

Introduction: derived topologies and hyperstationary sets

2 Hyperstationary sets and indescribable cardinals

3 The consistency strength of hyperstationarity. Applications and Open Questions

< 日 > < 同 > < 回 > < 回 > < 回 > <

Provability Logic

Provability Logic is the logic in the language of propositional logic with an additional modal operator \Box .

Axioms:

Boolean tautologies.

- $(\Box \varphi \to \varphi) \to \Box \varphi$

Rules:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Provability Logic

Provability Logic is the logic in the language of propositional logic with an additional modal operator \Box .

Axioms:

- Boolean tautologies.
- $(\Box \varphi \to \varphi) \to \Box \varphi$

Rules:

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Provability Logic

Provability Logic is the logic in the language of propositional logic with an additional modal operator \Box .

Axioms:

- Boolean tautologies.
- $(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$
- $(\Box \varphi \to \varphi) \to \Box \varphi$

Rules:

- $\bullet \vdash \varphi, \vdash \varphi \rightarrow \psi \Rightarrow \vdash \psi \text{ (Modus Ponens)}$
- ② $\vdash \varphi \Rightarrow \vdash \Box \varphi$ (Necessitation)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

The Logic \mathbf{GLP}_{ω}

One may introduce additional modal operators [n], for each $n < \omega$. The corresponding dual operators $\neg[n]\neg$ are denoted by $\langle n \rangle$. The logic system **GLP**_{ω} (Japaridze, 1986) has the following axioms and rules:

Axioms:

Boolean tautologies.

- $\ \ \, {\it O} \ \, [n](\varphi \to \psi) \to ([n]\varphi \to [n]\psi), \ \, {\it for \ all \ } n < \omega.$
- $[n]([n]\varphi \to \varphi) \to [n]\varphi, \text{ for all } n < \omega.$

()
$$[m]\varphi \rightarrow [n]\varphi$$
, for all $m < n < \omega$.

 $(m)\varphi \to [n]\langle m\rangle\varphi, \text{ for all } m < n < \omega.$

Rules:

② $\vdash \varphi \Rightarrow \vdash [n]\varphi$, for all $n < \omega$ (Necessitation)

イロト 不得 トイヨト イヨト 三日

The Logic \mathbf{GLP}_{ω}

One may introduce additional modal operators [n], for each $n < \omega$. The corresponding dual operators $\neg[n]\neg$ are denoted by $\langle n \rangle$. The logic system **GLP**_{ω} (Japaridze, 1986) has the following axioms and rules:

Axioms:

Boolean tautologies.

2
$$[n](\varphi \to \psi) \to ([n]\varphi \to [n]\psi)$$
, for all $n < \omega$.

$$[n]([n]\varphi \to \varphi) \to [n]\varphi, \text{ for all } n < \omega.$$

•
$$[m]\varphi \rightarrow [n]\varphi$$
, for all $m < n < \omega$.

$$(m) \varphi \to [n] \langle m \rangle \varphi, \text{ for all } m < n < \omega.$$

Rules:

② $\vdash \varphi \Rightarrow \vdash [n]\varphi$, for all $n < \omega$ (Necessitation)

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・ ・ 日

The Logic \mathbf{GLP}_{ω}

One may introduce additional modal operators [n], for each $n < \omega$. The corresponding dual operators $\neg[n]\neg$ are denoted by $\langle n \rangle$. The logic system **GLP**_{ω} (Japaridze, 1986) has the following axioms and rules:

Axioms:

Boolean tautologies.

2
$$[n](\varphi \to \psi) \to ([n]\varphi \to [n]\psi)$$
, for all $n < \omega$.

$$[n]([n]\varphi \to \varphi) \to [n]\varphi, \text{ for all } n < \omega.$$

•
$$[m]\varphi \rightarrow [n]\varphi$$
, for all $m < n < \omega$.

$$(m) \varphi \to [n] \langle m \rangle \varphi, \text{ for all } m < n < \omega.$$

Rules:

$$\bullet \vdash \varphi, \vdash \varphi \rightarrow \psi \Rightarrow \vdash \psi \text{ (Modus Ponens)}$$

②
$$\vdash \varphi \Rightarrow \vdash [n]\varphi$$
, for all $n < \omega$ (Necessitation)

・ロト ・雪 ト ・ヨ ト ・

The Logic \mathbf{GLP}_{ξ}

More generally, for any ordinal $\xi \geq 2$, one considers the language of propositional logic with additional modal operators $[\alpha]$, for each $\alpha < \xi$. The corresponding dual operators $\neg[\alpha]\neg$ being denoted by $\langle \alpha \rangle$. The logic system **GLP**_{ξ} has the following axioms and rules:

Axioms:

Boolean tautologies.

$$[\alpha](\varphi \to \psi) \to ([\alpha]\varphi \to [\alpha]\psi), \text{ for all } \alpha < \xi.$$

$$\ \, \textbf{3} \ \, [\alpha]([\alpha]\varphi \to \varphi) \to [\alpha]\varphi, \text{ for all } \alpha < \xi.$$

 $\ \, [\beta]\varphi \to [\alpha]\varphi, \text{ for all } \beta < \alpha < \xi.$

Rules:

 $@ \vdash \varphi \Rightarrow \vdash [\alpha]\varphi, \text{ for all } \alpha < \xi \text{ (Necessitation)}$

The Logic \mathbf{GLP}_{ξ}

More generally, for any ordinal $\xi \geq 2$, one considers the language of propositional logic with additional modal operators $[\alpha]$, for each $\alpha < \xi$. The corresponding dual operators $\neg[\alpha]\neg$ being denoted by $\langle \alpha \rangle$. The logic system **GLP**_{ξ} has the following axioms and rules:

Axioms:

Boolean tautologies.

$$\begin{tabular}{ll} \end{tabular} \begin{tabular}{ll} \end{tabular} \$$

$$[\beta]\varphi \to [\alpha]\varphi, \text{ for all } \beta < \alpha < \xi.$$

$$(\beta) \varphi \to [\alpha] \langle \beta \rangle \varphi, \text{ for all } \beta < \alpha < \xi.$$

Rules:

② $\vdash \varphi \Rightarrow \vdash [\alpha]\varphi$, for all $\alpha < \xi$ (Necessitation)

The Logic \mathbf{GLP}_{ξ}

More generally, for any ordinal $\xi \geq 2$, one considers the language of propositional logic with additional modal operators $[\alpha]$, for each $\alpha < \xi$. The corresponding dual operators $\neg[\alpha]\neg$ being denoted by $\langle \alpha \rangle$. The logic system **GLP**_{ξ} has the following axioms and rules:

Axioms:

Boolean tautologies.

$$\ \ \, {\bf @} \ \ \, [\alpha](\varphi \to \psi) \to ([\alpha]\varphi \to [\alpha]\psi), \ {\rm for \ all} \ \alpha < \xi.$$

$$\ \ \, \textbf{[}\alpha\textbf{]}([\alpha]\varphi \to \varphi) \to [\alpha]\varphi, \text{ for all } \alpha < \xi.$$

$$\ \, {\bf [}\beta{\bf]}\varphi\rightarrow [\alpha]\varphi, \text{ for all } \beta<\alpha<\xi.$$

$$\label{eq:basic_states} \begin{tabular}{ll} \begin{tabular}{ll}$$

Rules:

$$\bullet \vdash \varphi, \vdash \varphi \rightarrow \psi \Rightarrow \vdash \psi \text{ (Modus Ponens)}$$

People have been interested in proving completeness for \mathbf{GLP}_{ξ} , with respect to some natural semantics.

Problem: Kripke-style semantics do not work!

So the goal has been to prove completeness for \mathbf{GLP}_ξ with respect to topological semantics.

イロト イヨト イヨト

People have been interested in proving completeness for \mathbf{GLP}_{ξ} , with respect to some natural semantics.

Problem: Kripke-style semantics do not work!

So the goal has been to prove completeness for \mathbf{GLP}_{ξ} with respect to topological semantics.

イロト イボト イヨト イヨト

People have been interested in proving completeness for \mathbf{GLP}_{ξ} , with respect to some natural semantics.

Problem: Kripke-style semantics do not work!

So the goal has been to prove completeness for \mathbf{GLP}_{ξ} with respect to topological semantics.

Thus, one considers polytopological spaces $(X, (\tau_{\alpha})_{\alpha < \xi})$.

A valuation on X is a map $v : Form \to \mathcal{P}(X)$ such that:

$$(\neg \varphi) = X - v(\varphi)$$

$$v(\varphi \wedge \psi) = v(\varphi) \cap v(\psi)$$

ν(⟨α⟩φ) = D_α(ν(φ)), for all α < ξ, where D_α : P(X) → P(X) is the derived set operator for τ_α (i.e., D_α(A) is the set of limit points of A in the τ_α topology).
Hence, ν([α]φ) = X - D_α(X - ν(φ)) = the τ_α-interior of ν(φ), for

all $\alpha < \xi$.

A formula is valid in X if $v(\varphi) = X$, for every valuation v on X.

イロト 不得 トイヨト イヨト 三日

Thus, one considers polytopological spaces $(X, (\tau_{\alpha})_{\alpha < \xi})$.

A valuation on X is a map $v : Form \to \mathcal{P}(X)$ such that:

$$v(\neg \varphi) = X - v(\varphi)$$

$$(\varphi \wedge \psi) = v(\varphi) \cap v(\psi)$$

ν(⟨α⟩φ) = D_α(ν(φ)), for all α < ξ, where D_α : P(X) → P(X) is the derived set operator for τ_α (i.e., D_α(A) is the set of limit points of A in the τ_α topology). Hence, ν([α]φ) = X - D_α(X - ν(φ)) = the τ_α-interior of ν(φ), for all α < ξ.

A formula is valid in X if $v(\varphi) = X$, for every valuation v on X.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うへつ

Thus, one considers polytopological spaces $(X, (\tau_{\alpha})_{\alpha < \xi})$.

A valuation on X is a map $v : Form \to \mathcal{P}(X)$ such that:

$$v(\neg \varphi) = X - v(\varphi)$$

$$v(\varphi \wedge \psi) = v(\varphi) \cap v(\psi)$$

ν(⟨α⟩φ) = D_α(ν(φ)), for all α < ξ, where D_α : P(X) → P(X) is the derived set operator for τ_α (i.e., D_α(A) is the set of limit points of A in the τ_α topology). Hence, ν([α]φ) = X - D_α(X - ν(φ)) = the τ_α-interior of ν(φ), for all α < ξ.

A formula is valid in X if $v(\varphi) = X$, for every valuation v on X.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ○ ○

For the **GLP**_{ξ} axioms to be valid in $(X, (\tau_{\alpha})_{\alpha < \xi})$, the topologies τ_{α} have to satisfy:

- τ_{α} is scattered, all $\alpha < \xi$.
- $\ 2 \ \ \tau_{\beta} \subseteq \tau_{\alpha}, \text{ for all } \beta \leq \alpha < \xi.$
- **③** $D_{\alpha}(A)$ is an open set in $\tau_{\alpha+1}$, for all $A \subseteq X$.

Moreover, for \mathbf{GLP}_{ξ} to be complete, one must also have: The τ_{α} are non-trivial (i.e., non discrete).

So, one doesn't have much choice on how to define the τ_{α} : One fixes a scattered topology τ_0 on X, and the other topologies are determined by the D_{α} operators. One only needs to make sure the τ_{α} are non-trivial.

Such polytopological spaces are called general **GLP**-spaces.

イロト 不得 トイヨト イヨト 三日

For the **GLP**_{ξ} axioms to be valid in $(X, (\tau_{\alpha})_{\alpha < \xi})$, the topologies τ_{α} have to satisfy:

- $\ \, {\bf 2} \ \, \tau_{\beta} \subseteq \tau_{\alpha}, \ \, {\rm for \ \, all} \ \, \beta \leq \alpha < \xi.$
- **3** $D_{\alpha}(A)$ is an open set in $\tau_{\alpha+1}$, for all $A \subseteq X$.

Moreover, for **GLP** $_{\mathcal{E}}$ to be complete, one must also have:

• The τ_{α} are non-trivial (i.e., non discrete).

So, one doesn't have much choice on how to define the τ_{α} : One fixes a scattered topology τ_0 on X, and the other topologies are determined by the D_{α} operators. One only needs to make sure the τ_{α} are non-trivial.

Such polytopological spaces are called general **GLP**-spaces.

イロト イポト イヨト イヨト 三日

For the **GLP**_{ξ} axioms to be valid in $(X, (\tau_{\alpha})_{\alpha < \xi})$, the topologies τ_{α} have to satisfy:

- $\ \, {\bf 2} \ \, \tau_{\beta} \subseteq \tau_{\alpha}, \ \, {\rm for \ \, all} \ \, \beta \leq \alpha < \xi.$
- **3** $D_{\alpha}(A)$ is an open set in $\tau_{\alpha+1}$, for all $A \subseteq X$.

Moreover, for \mathbf{GLP}_{ξ} to be complete, one must also have:

• The τ_{α} are non-trivial (i.e., non discrete).

So, one doesn't have much choice on how to define the τ_{α} : One fixes a scattered topology τ_0 on X, and the other topologies are determined by the D_{α} operators. One only needs to make sure the τ_{α} are non-trivial.

Such polytopological spaces are called general **GLP**-spaces.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

For the **GLP**_{ξ} axioms to be valid in $(X, (\tau_{\alpha})_{\alpha < \xi})$, the topologies τ_{α} have to satisfy:

- $\ \, {\bf 2} \ \, \tau_{\beta} \subseteq \tau_{\alpha}, \ \, {\rm for \ \, all} \ \, \beta \leq \alpha < \xi.$
- **3** $D_{\alpha}(A)$ is an open set in $\tau_{\alpha+1}$, for all $A \subseteq X$.

Moreover, for \mathbf{GLP}_{ξ} to be complete, one must also have:

• The τ_{α} are non-trivial (i.e., non discrete).

So, one doesn't have much choice on how to define the τ_{α} : One fixes a scattered topology τ_0 on X, and the other topologies are determined by the D_{α} operators. One only needs to make sure the τ_{α} are non-trivial.

Such polytopological spaces are called general GLP-spaces.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Fix some limit ordinal δ (we also allow $\delta = OR$).

Recall that the order topology on δ (a. k. a. the interval topology) is the topology τ_0 generated by the set \mathcal{B}_0 consisting of $\{0\}$ and the intervals (α, β) .

 τ_0 is a Hausdorff scattered topology in which 0 and all successor ordinals are isolated points, and the accumulation points are precisely the limit ordinals.

Now define a continuous sequence of derived topologies

 $\tau_0 \subseteq \tau_1 \subseteq \ldots \subseteq \tau_{\xi} \subseteq \ldots$

as follows:

Fix some limit ordinal δ (we also allow $\delta = OR$).

Recall that the order topology on δ (a. k. a. the interval topology) is the topology τ_0 generated by the set \mathcal{B}_0 consisting of $\{0\}$ and the intervals (α, β) .

 τ_0 is a Hausdorff scattered topology in which 0 and all successor ordinals are isolated points, and the accumulation points are precisely the limit ordinals.

Now define a continuous sequence of derived topologies

 $\tau_0 \subseteq \tau_1 \subseteq \ldots \subseteq \tau_{\xi} \subseteq \ldots$

as follows:

イロト 不得 トイヨト イヨト 三日

Fix some limit ordinal δ (we also allow $\delta = OR$).

Recall that the order topology on δ (a. k. a. the interval topology) is the topology τ_0 generated by the set \mathcal{B}_0 consisting of $\{0\}$ and the intervals (α, β) .

 τ_0 is a Hausdorff scattered topology in which 0 and all successor ordinals are isolated points, and the accumulation points are precisely the limit ordinals.

Now define a continuous sequence of derived topologies

 $\tau_0 \subseteq \tau_1 \subseteq \ldots \subseteq \tau_{\xi} \subseteq \ldots$

as follows:

イロト イポト イヨト イヨト 三日

Fix some limit ordinal δ (we also allow $\delta = OR$).

Recall that the order topology on δ (a. k. a. the interval topology) is the topology τ_0 generated by the set \mathcal{B}_0 consisting of $\{0\}$ and the intervals (α, β) .

 τ_0 is a Hausdorff scattered topology in which 0 and all successor ordinals are isolated points, and the accumulation points are precisely the limit ordinals.

Now define a continuous sequence of derived topologies

$$\tau_0 \subseteq \tau_1 \subseteq \ldots \subseteq \tau_{\xi} \subseteq \ldots$$

as follows:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Given τ_{ξ} , let $D_{\xi} : \mathcal{P}(\delta) \to \mathcal{P}(\delta)$ be the Cantor derivative operator: $D_{\xi}(A) := \{ \alpha \in \delta : \alpha \text{ is a limit point of } A \text{ in the } \tau_{\xi} \text{ topology} \}.$

Note that $D_{\xi}(A)$ is a closed set in the au_{ξ} topology. Then let $au_{\xi+1}$ be the topology generated by the set

 $\mathcal{B}_{\xi+1} := \mathcal{B}_{\xi} \cup \{ D_{\xi}(A) : A \subseteq \delta \}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Given τ_{ξ} , let $D_{\xi} : \mathcal{P}(\delta) \to \mathcal{P}(\delta)$ be the Cantor derivative operator:

 $D_{\xi}(A) := \{ \alpha \in \delta : \alpha \text{ is a limit point of } A \text{ in the } \tau_{\xi} \text{ topology} \}.$

Note that $D_{\xi}(A)$ is a closed set in the τ_{ξ} topology.

Then let $au_{\ell+1}$ be the topology generated by the set

 $\mathcal{B}_{\xi+1} := \mathcal{B}_{\xi} \cup \{ D_{\xi}(A) : A \subseteq \delta \}.$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

Given τ_{ξ} , let $D_{\xi} : \mathcal{P}(\delta) \to \mathcal{P}(\delta)$ be the Cantor derivative operator:

 $D_{\xi}(A) := \{ \alpha \in \delta : \alpha \text{ is a limit point of } A \text{ in the } \tau_{\xi} \text{ topology} \}.$

Note that $D_{\xi}(A)$ is a closed set in the τ_{ξ} topology. Then let $\tau_{\xi+1}$ be the topology generated by the set

 $\lambda_{\xi+1}$ be the topology generated by the set

$$\mathcal{B}_{\xi+1} := \mathcal{B}_{\xi} \cup \{ D_{\xi}(A) : A \subseteq \delta \}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Notice that if the cofinality of α is uncountable and $\alpha \in D_0(A)$, then $D_0(A) \cap \alpha$ is a club subset of α .

The set $\mathcal{B}_1 := \mathcal{B}_0 \cup \{D_0(A) : A \subseteq \delta\}$ is a base for the topology τ_1 on OR, known as the club topology.

Note that the non-isolated points are exactly the ordinals of uncountable cofinality.

Fact

For every set of ordinals A,

 $D_1(A) = \{ \alpha : A \cap \alpha \text{ is stationary in } \alpha \}.$

イロト イヨト イヨト

Notice that if the cofinality of α is uncountable and $\alpha \in D_0(A)$, then $D_0(A) \cap \alpha$ is a club subset of α .

The set $\mathcal{B}_1 := \mathcal{B}_0 \cup \{D_0(A) : A \subseteq \delta\}$ is a base for the topology τ_1 on OR, known as the club topology.

Note that the non-isolated points are exactly the ordinals of uncountable cofinality.

Fact

For every set of ordinals A,

 $D_1(A) = \{ \alpha : A \cap \alpha \text{ is stationary in } \alpha \}.$

3

イロト イボト イヨト イヨト

Notice that if the cofinality of α is uncountable and $\alpha \in D_0(A)$, then $D_0(A) \cap \alpha$ is a club subset of α .

The set $\mathcal{B}_1 := \mathcal{B}_0 \cup \{D_0(A) : A \subseteq \delta\}$ is a base for the topology τ_1 on OR, known as the club topology.

Note that the non-isolated points are exactly the ordinals of uncountable cofinality.

Fact

For every set of ordinals A,

 $D_1(A) = \{ \alpha : A \cap \alpha \text{ is stationary in } \alpha \}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

Notice that if the cofinality of α is uncountable and $\alpha \in D_0(A)$, then $D_0(A) \cap \alpha$ is a club subset of α .

The set $\mathcal{B}_1 := \mathcal{B}_0 \cup \{D_0(A) : A \subseteq \delta\}$ is a base for the topology τ_1 on OR, known as the club topology.

Note that the non-isolated points are exactly the ordinals of uncountable cofinality.

Fact

For every set of ordinals A,

```
D_1(A) = \{ \alpha : A \cap \alpha \text{ is stationary in } \alpha \}.
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

The next topology, au_2 , is generated by the set

$$\mathcal{B}_2 := \mathcal{B}_1 \cup \{D_1(A) : A \subseteq OR\}.$$

If some stationary subset S of α does not reflect (i.e., $D_1(S) = \{\alpha\}$), then α is an isolated point of τ_2 . Thus, every non-isolated point α has to reflect all stationary sets.

Further, if some stationary subsets S, T of α do not simultaneously reflect (i.e., $D_1(S) \cap D_1(T) = \{\alpha\}$), then α is an isolated point of τ_2 . Thus, every non-isolated point has to reflect simultaneously all pairs of stationary sets.

イロト イヨト イヨト

The next topology, au_2 , is generated by the set

$$\mathcal{B}_2 := \mathcal{B}_1 \cup \{D_1(A) : A \subseteq OR\}.$$

If some stationary subset S of α does not reflect (i.e., $D_1(S) = \{\alpha\}$), then α is an isolated point of τ_2 . Thus, every non-isolated point α has to reflect all stationary sets.

Further, if some stationary subsets S, T of α do not simultaneously reflect (i.e., $D_1(S) \cap D_1(T) = \{\alpha\}$), then α is an isolated point of τ_2 . Thus, every non-isolated point has to reflect simultaneously all pairs of stationary sets.

イロト 不得 トイヨト イヨト 二日

The next topology, au_2 , is generated by the set

$$\mathcal{B}_2 := \mathcal{B}_1 \cup \{D_1(A) : A \subseteq OR\}.$$

If some stationary subset S of α does not reflect (i.e., $D_1(S) = \{\alpha\}$), then α is an isolated point of τ_2 . Thus, every non-isolated point α has to reflect all stationary sets.

Further, if some stationary subsets S, T of α do not simultaneously reflect (i.e., $D_1(S) \cap D_1(T) = \{\alpha\}$), then α is an isolated point of τ_2 . Thus, every non-isolated point has to reflect simultaneously all pairs of stationary sets.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Stationary reflection

An ordinal α of uncountable cofinality reflects stationary sets if for every stationary $A \subseteq \alpha$ there exists $\beta < \alpha$ such that $A \cap \beta$ is stationary in β .

Let us say that an ordinal α of uncountable cofinality is simultaneoulsy-stationary-reflecting if every pair A, B of stationary subsets of α simultaneously reflect, that is, there exists $\beta < \alpha$ such that $A \cap \beta$ and $B \cap \beta$ are both stationary in β .

イロト イヨト イヨト

Stationary reflection

An ordinal α of uncountable cofinality reflects stationary sets if for every stationary $A \subseteq \alpha$ there exists $\beta < \alpha$ such that $A \cap \beta$ is stationary in β .

Let us say that an ordinal α of uncountable cofinality is simultaneoulsy-stationary-reflecting if every pair A, B of stationary subsets of α simultaneously reflect, that is, there exists $\beta < \alpha$ such that $A \cap \beta$ and $B \cap \beta$ are both stationary in β .

・ロト ・雪 ト ・ヨ ト ・

Jensen's Theorem

It is easy to see that every weakly-compact cardinal (i.e., Π_1^1 -indescribable) is simultaneously-stationary-reflecting.

Theorem (Jensen)

In the constructible universe L a regular cardinal κ reflects stationary sets if and only if it is Π_1^1 -indescribable, hence if and only if it is simultaneously-stationary-reflecting.^a

^aR. Jensen, The fine structure of the constructible hierarchy. Annals of Math. Logic 4 (1972)

Thus, in L, the non-isolated points of the topology τ_2 are precisely the ordinals whose cofinality is a weakly-compact cardinal.

< ロ > < 同 > < 回 > < 回 >

Jensen's Theorem

It is easy to see that every weakly-compact cardinal (i.e., Π_1^1 -indescribable) is simultaneously-stationary-reflecting.

Theorem (Jensen)

In the constructible universe L a regular cardinal κ reflects stationary sets if and only if it is Π_1^1 -indescribable, hence if and only if it is simultaneously-stationary-reflecting.^a

 ${}^{a}\text{R}.$ Jensen, The fine structure of the constructible hierarchy. Annals of Math. Logic 4 (1972)

Thus, in L, the non-isolated points of the topology τ_2 are precisely the ordinals whose cofinality is a weakly-compact cardinal.

・ロト ・ 一 マ ・ コ ・ ・ 日 ・

Jensen's Theorem

It is easy to see that every weakly-compact cardinal (i.e., Π_1^1 -indescribable) is simultaneously-stationary-reflecting.

Theorem (Jensen)

In the constructible universe L a regular cardinal κ reflects stationary sets if and only if it is Π_1^1 -indescribable, hence if and only if it is simultaneously-stationary-reflecting.^a

 $^a \mbox{R}.$ Jensen, The fine structure of the constructible hierarchy. Annals of Math. Logic 4 (1972)

Thus, in *L*, the non-isolated points of the topology τ_2 are precisely the ordinals whose cofinality is a weakly-compact cardinal.

くロ と く 同 と く ヨ と 一

Moreover,

Theorem (Magidor)

If κ is regular and reflects simultaneously pairs of stationary subsets, then κ is a weakly compact cardinal in L.^a

^aM. Magidor, Reflecting stationary sets. JSL, Vol. 47, Num. 4 (1982)

It follows that the consistency strength of the non-triviality of au_2 is a weakly compact cardinal.

Moreover,

Theorem (Magidor)

If κ is regular and reflects simultaneously pairs of stationary subsets, then κ is a weakly compact cardinal in L.ª

^aM. Magidor, Reflecting stationary sets. JSL, Vol. 47, Num. 4 (1982)

It follows that the consistency strength of the non-triviality of τ_2 is a weakly compact cardinal.

ξ -stationary sets

Definition

We say that $A \subseteq \delta$ is 0-stationary in α , α a limit ordinal, if and only if $A \cap \alpha$ is unbounded in α . For $\xi > 0$, we say that A is ξ -stationary in α if and only if for every $\zeta < \xi$, every subset S of α that is ζ -stationary in α ζ -reflects to some $\beta \in A$, i.e., $S \cap \beta$ is ζ -stationary in β .

Note:

- **()** A is 1-stationary in $\alpha \Leftrightarrow A$ is stationary in α , in the usual sense.
- ② A is 2-stationary in α ⇔ every stationary subset of α reflects to some β ∈ A.

3

イロト イヨト イヨト

ξ -stationary sets

Definition

We say that $A \subseteq \delta$ is 0-stationary in α , α a limit ordinal, if and only if $A \cap \alpha$ is unbounded in α . For $\xi > 0$, we say that A is ξ -stationary in α if and only if for every $\zeta < \xi$, every subset S of α that is ζ -stationary in α ζ -reflects to some $\beta \in A$, i.e., $S \cap \beta$ is ζ -stationary in β .

Note:

- **1** A is 1-stationary in $\alpha \Leftrightarrow A$ is stationary in α , in the usual sense.
- ② A is 2-stationary in α ⇔ every stationary subset of α reflects to some β ∈ A.

イロト 不得 トイヨト イヨト 二日

ξ -stationary sets

Definition

We say that $A \subseteq \delta$ is 0-stationary in α , α a limit ordinal, if and only if $A \cap \alpha$ is unbounded in α . For $\xi > 0$, we say that A is ξ -stationary in α if and only if for every $\zeta < \xi$, every subset S of α that is ζ -stationary in α ζ -reflects to some $\beta \in A$, i.e., $S \cap \beta$ is ζ -stationary in β .

Note:

- **(**) A is 1-stationary in $\alpha \Leftrightarrow A$ is stationary in α , in the usual sense.
- Q A is 2-stationary in α ⇔ every stationary subset of α reflects to some β ∈ A.

$\xi\mbox{-stationary}$ reflection

Definition

We say that $A \subseteq \delta$ is 0-simultaneously-stationary in α (0-s-stationary in α , for short) if and only if $A \cap \alpha$ is unbounded in α .

For $\xi > 0$, we say that $A \subseteq \delta$ is ξ -simultaneously-stationary in α (ξ -s-stationary in α , for short) if and only for every $\zeta < \xi$, every pair of ζ -s-stationary subsets $B, C \subseteq \alpha$ simultaneously ζ -s-reflect at some $\beta \in A$, i.e., $B \cap \beta$ and $C \cap \beta$ are ζ -s-stationary in β .

Note:

- **(**) A is 1-s-stationary in $\alpha \Leftrightarrow A$ is stationary in α .
- a is 2-s-stationary in α ⇔ every pair of stationary subsets of α simultaneously reflect to some β ∈ A.

< ロ > < 同 > < 三 > < 三 >

$\xi\text{-stationary}$ reflection

Definition

We say that $A \subseteq \delta$ is 0-simultaneously-stationary in α (0-s-stationary in α , for short) if and only if $A \cap \alpha$ is unbounded in α . For $\xi > 0$, we say that $A \subseteq \delta$ is ξ -simultaneously-stationary in α (ξ -s-stationary in α , for short) if and only for every $\zeta < \xi$, every pair of ζ -s-stationary subsets $B, C \subseteq \alpha$ simultaneously ζ -s-reflect at some $\beta \in A$, i.e., $B \cap \beta$ and $C \cap \beta$ are ζ -s-stationary in β .

Note:

- **()** A is 1-s-stationary in $\alpha \Leftrightarrow A$ is stationary in α .
- ② A is 2-s-stationary in α ⇔ every pair of stationary subsets of α simultaneously reflect to some β ∈ A.

<ロト < 同ト < ヨト < ヨト

$\xi\mbox{-stationary}$ reflection

Definition

We say that $A \subseteq \delta$ is 0-simultaneously-stationary in α (0-s-stationary in α , for short) if and only if $A \cap \alpha$ is unbounded in α . For $\xi > 0$, we say that $A \subseteq \delta$ is ξ -simultaneously-stationary in α (ξ -s-stationary in α , for short) if and only for every $\zeta < \xi$, every pair of ζ -s-stationary subsets $B, C \subseteq \alpha$ simultaneously ζ -s-reflect at some $\beta \in A$, i.e., $B \cap \beta$ and $C \cap \beta$ are ζ -s-stationary in β .

Note:

1 A is 1-s-stationary in $\alpha \Leftrightarrow A$ is stationary in α .

② A is 2-s-stationary in α ⇔ every pair of stationary subsets of α simultaneously reflect to some β ∈ A.

< ロ > < 同 > < 回 > < 回 > < 回 > <

$\xi\mbox{-stationary}$ reflection

Definition

We say that $A \subseteq \delta$ is 0-simultaneously-stationary in α (0-s-stationary in α , for short) if and only if $A \cap \alpha$ is unbounded in α . For $\xi > 0$, we say that $A \subseteq \delta$ is ξ -simultaneously-stationary in α (ξ -s-stationary in α , for short) if and only for every $\zeta < \xi$, every pair of ζ -s-stationary subsets $B, C \subseteq \alpha$ simultaneously ζ -s-reflect at some $\beta \in A$, i.e., $B \cap \beta$ and $C \cap \beta$ are ζ -s-stationary in β .

Note:

- **1** A is 1-s-stationary in $\alpha \Leftrightarrow A$ is stationary in α .
- ② A is 2-s-stationary in α ⇔ every pair of stationary subsets of α simultaneously reflect to some β ∈ A.

くロ と く 同 と く ヨ と 一

Lecture II

æ

・ロト ・四ト ・ヨト ・ヨト