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Outline

@ Introduction: derived topologies and hyperstationary sets

© Hyperstationary sets and indescribable cardinals

© The consistency strength of hyperstationarity. Applications and Open
Questions
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Provability Logic is the logic in the language of propositional logic with an

additional modal operator O.
Axioms:
© Boolean tautologies.
Q@ O(p = ¢) = (By — V)
© D(Byp = ¢) = Oy
Rules:
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The Logic GLP,,

One may introduce additional modal operators [n], for each n < w. The
corresponding dual operators —[n]— are denoted by (n). The logic system
GLP,, (Japaridze, 1986) has the following axioms and rules:
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The Logic GLP;

More generally, for any ordinal £ > 2, one considers the language of
propositional logic with additional modal operators [«], for each o < €.
The corresponding dual operators —[a]— being denoted by (a). The logic
system GLP¢ has the following axioms and rules:
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respect to some natural semantics.
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Topological semantics

People have been interested in proving completeness for GLP¢, with
respect to some natural semantics.

Problem: Kripke-style semantics do not work!

So the goal has been to prove completeness for GLP¢ with respect to
topological semantics.
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0 v(=p) = X —v(p)

@ v(p A1) = v(g) N V(1)

Q v({a)p) = Du(v(p)), for all a < &, where D, : P(X) — P(X) is the
derived set operator for 7, (i.e., D,(A) is the set of limit points of A
in the 7, topology).

Hence, v([a]p) = X — Do(X — v(p)) = the T4-interior of v(yp), for
all a < €.

A formula is valid in X if v(¢) = X, for every valuation v on X.
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Topological semantics

For the GLP¢ axioms to be valid in (X, (7 )a<¢), the topologies 7, have
to satisfy:

@ 7, is scattered, all a < &.
Q@ 73C 7 forall B<a <.
© D,(A) is an open set in 7,41, for all A C X.
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Topological semantics

For the GLP¢ axioms to be valid in (X, (7 )a<¢), the topologies 7, have
to satisfy:

@ 7, is scattered, all a < &.
Q@ 73C 7 forall B<a <.
© D,(A) is an open set in 7,41, for all A C X.
Moreover, for GLP¢ to be complete, one must also have:

© The 7, are non-trivial (i.e., non discrete).

So, one doesn’'t have much choice on how to define the 7,: One fixes a
scattered topology 79 on X, and the other topologies are determined by
the D, operators. One only needs to make sure the 7, are non-trivial.

Such polytopological spaces are called general GLP-spaces.
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Ordinal GLP-spaces

Fix some limit ordinal ¢ (we also allow 6 = OR).
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Ordinal GLP-spaces

Fix some limit ordinal ¢ (we also allow 6 = OR).

Recall that the order topology on ¢ (a. k. a. the interval topology) is the
topology 79 generated by the set By consisting of {0} and the intervals

(a, B)-

To is a Hausdorff scattered topology in which 0 and all successor ordinals
are isolated points, and the accumulation points are precisely the limit
ordinals.

Now define a continuous sequence of derived topologies
T0oCT1C...CeC...

as follows:
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Derived Topologies

Given ¢, let D¢ : P(d) — P(J) be the Cantor derivative operator:

D¢(A) :={a € : v is a limit point of A in the 7¢ topology}.
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Derived Topologies

Given ¢, let D¢ : P(d) — P(J) be the Cantor derivative operator:
D¢(A) :={a € : v is a limit point of A in the 7¢ topology}.

Note that D¢(A) is a closed set in the 7¢ topology.

Then let 7:,1 be the topology generated by the set

B§+1 = BE U {DS(A) A C 5}.
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Derived Topologies

Notice that if the cofinality of a is uncountable and a € Dy(A), then
Do(A) N« is a club subset of a.
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Derived Topologies

Notice that if the cofinality of a is uncountable and a € Dy(A), then
Do(A) N« is a club subset of a.

The set By := By U {Dp(A) : AC §} is a base for the topology 71 on OR,
known as the club topology.

Note that the non-isolated points are exactly the ordinals of uncountable
cofinality.

Fact
For every set of ordinals A,

Di1(A) = {a: AN« is stationary in o}.
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Derived Topologies

The next topology, T, is generated by the set

By =B U {Dl(A) tAC OR}.

If some stationary subset S of a does not reflect (i.e., D1(S) = {a}), then

« is an isolated point of 5. Thus, every non-isolated point « has to reflect
all stationary sets.
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Derived Topologies

The next topology, T, is generated by the set

By =B U {Dl(A) tAC OR}.

If some stationary subset S of a does not reflect (i.e., D1(S) = {a}), then
« is an isolated point of 5. Thus, every non-isolated point « has to reflect
all stationary sets.

Further, if some stationary subsets S, T of a do not simultaneously reflect
(i.e., D1(S)ND1(T) = {a}), then ais an isolated point of 7. Thus, every
non-isolated point has to reflect simultaneously all pairs of stationary sets.
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Stationary reflection

An ordinal « of uncountable cofinality reflects stationary sets if for every
stationary A C « there exists 8 < « such that AN g3 is stationary in 3.

Joan Bagaria (ICREA & UB) An Introduction to Hyperstationary Sets 13 / 46



Introduction: derived topologies and hyperstationary sets

Stationary reflection

An ordinal « of uncountable cofinality reflects stationary sets if for every
stationary A C « there exists 8 < « such that AN g3 is stationary in 3.

Let us say that an ordinal « of uncountable cofinality is
simultaneoulsy-stationary-reflecting if every pair A, B of stationary subsets

of a simultaneously reflect, that is, there exists 8 < « such that AN 5 and
B N B are both stationary in 5.
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Jensen's Theorem

It is easy to see that every weakly-compact cardinal (i.e., Mi-indescribable)
is simultaneously-stationary-reflecting.
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Jensen's Theorem

It is easy to see that every weakly-compact cardinal (i.e., Mi-indescribable)
is simultaneously-stationary-reflecting.

Theorem (Jensen)

In the constructible universe L a regular cardinal k reflects stationary sets
if and only if it is I'I%—indescribable, hence if and only if it is
simultaneously-stationary-reflecting.?

°R. Jensen, The fine structure of the constructible hierarchy. Annals of
Math. Logic 4 (1972)
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Jensen's Theorem

It is easy to see that every weakly-compact cardinal (i.e., Mi-indescribable)
is simultaneously-stationary-reflecting.

Theorem (Jensen)

In the constructible universe L a regular cardinal k reflects stationary sets
if and only if it is I'I%—indescribable, hence if and only if it is
simultaneously-stationary-reflecting.?

°R. Jensen, The fine structure of the constructible hierarchy. Annals of
Math. Logic 4 (1972)

Thus, in L, the non-isolated points of the topology ™ are precisely the
ordinals whose cofinality is a weakly-compact cardinal.
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Moreover,

Theorem (Magidor)

If k is regular and reflects simultaneously pairs of stationary subsets, then
K is a weakly compact cardinal in L.?

M. Magidor, Reflecting stationary sets. JSL, Vol. 47, Num. 4 (1982)
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Moreover,

Theorem (Magidor)

If k is regular and reflects simultaneously pairs of stationary subsets, then
K is a weakly compact cardinal in L.?

M. Magidor, Reflecting stationary sets. JSL, Vol. 47, Num. 4 (1982)

It follows that the consistency strength of the non-triviality of 7 is a
weakly compact cardinal.
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&-stationary sets

Definition

We say that A C § is O-stationary in «, « a limit ordinal, if and only if
AN« is unbounded in a.

For £ > 0, we say that A is {-stationary in « if and only if for every ¢ <&,
every subset S of « that is (-stationary in o (-reflects to some 8 € A, i.e.,
SN g is (-stationary in 5.
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&-stationary sets

Definition

We say that A C § is O-stationary in «, « a limit ordinal, if and only if
AN« is unbounded in a.

For £ > 0, we say that A is {-stationary in « if and only if for every ¢ <&,
every subset S of « that is (-stationary in o (-reflects to some 8 € A, i.e.,
SN g is (-stationary in 5.

Note:
@ A is 1l-stationary in o & A is stationary in «, in the usual sense.

@ A is 2-stationary in a < every stationary subset of « reflects to some
B e A.
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for short) if and only if AN« is unbounded in «.
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Note:
Q@ A is 1l-s-stationary in a < A is stationary in a.

@ A is 2-s-stationary in o < every pair of stationary subsets of «
simultaneously reflect to some 3 € A.
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