
An Introduction to Hyperstationary Sets

Joan Bagaria

Winter School in Abstract Analysis 2017
section Set Theory & Topology

Hejnice, Czech Republic, Jan 28 - Feb 4, 2017

Joan Bagaria (ICREA & UB) An Introduction to Hyperstationary Sets 1 / 46



Outline

1 Introduction: derived topologies and hyperstationary sets

2 Hyperstationary sets and indescribable cardinals

3 The consistency strength of hyperstationarity. Applications and Open
Questions

Joan Bagaria (ICREA & UB) An Introduction to Hyperstationary Sets 2 / 46



Introduction: derived topologies and hyperstationary sets

Provability Logic

Provability Logic is the logic in the language of propositional logic with an
additional modal operator 2.

Axioms:
1 Boolean tautologies.
2 2(ϕ→ ψ)→ (2ϕ→ 2ψ)
3 2(2ϕ→ ϕ)→ 2ϕ

Rules:
1 ` ϕ, ` ϕ→ ψ ⇒ ` ψ (Modus Ponens)
2 ` ϕ ⇒ ` 2ϕ (Necessitation)
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Introduction: derived topologies and hyperstationary sets

The Logic GLPω

One may introduce additional modal operators [n], for each n < ω. The
corresponding dual operators ¬[n]¬ are denoted by 〈n〉. The logic system
GLPω (Japaridze, 1986) has the following axioms and rules:

Axioms:
1 Boolean tautologies.
2 [n](ϕ→ ψ)→ ([n]ϕ→ [n]ψ), for all n < ω.
3 [n]([n]ϕ→ ϕ)→ [n]ϕ, for all n < ω.
4 [m]ϕ→ [n]ϕ, for all m < n < ω.
5 〈m〉ϕ→ [n]〈m〉ϕ, for all m < n < ω.

Rules:
1 ` ϕ, ` ϕ→ ψ ⇒ ` ψ (Modus Ponens)
2 ` ϕ ⇒ ` [n]ϕ, for all n < ω (Necessitation)
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Introduction: derived topologies and hyperstationary sets

The Logic GLPξ

More generally, for any ordinal ξ ≥ 2, one considers the language of
propositional logic with additional modal operators [α], for each α < ξ.
The corresponding dual operators ¬[α]¬ being denoted by 〈α〉. The logic
system GLPξ has the following axioms and rules:

Axioms:
1 Boolean tautologies.
2 [α](ϕ→ ψ)→ ([α]ϕ→ [α]ψ), for all α < ξ.
3 [α]([α]ϕ→ ϕ)→ [α]ϕ, for all α < ξ.
4 [β]ϕ→ [α]ϕ, for all β < α < ξ.
5 〈β〉ϕ→ [α]〈β〉ϕ, for all β < α < ξ.

Rules:
1 ` ϕ, ` ϕ→ ψ ⇒ ` ψ (Modus Ponens)
2 ` ϕ ⇒ ` [α]ϕ, for all α < ξ (Necessitation)
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Introduction: derived topologies and hyperstationary sets

Topological semantics

People have been interested in proving completeness for GLPξ, with
respect to some natural semantics.

Problem: Kripke-style semantics do not work!

So the goal has been to prove completeness for GLPξ with respect to
topological semantics.
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Introduction: derived topologies and hyperstationary sets

Topological semantics

Thus, one considers polytopological spaces (X , (τα)α<ξ).

A valuation on X is a map v : Form→ P(X ) such that:
1 v(¬ϕ) = X − v(ϕ)
2 v(ϕ ∧ ψ) = v(ϕ) ∩ v(ψ)
3 v(〈α〉ϕ) = Dα(v(ϕ)), for all α < ξ, where Dα : P(X )→ P(X ) is the

derived set operator for τα (i.e., Dα(A) is the set of limit points of A
in the τα topology).
Hence, v([α]ϕ) = X − Dα(X − v(ϕ)) = the τα-interior of v(ϕ), for
all α < ξ.

A formula is valid in X if v(ϕ) = X , for every valuation v on X .
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Introduction: derived topologies and hyperstationary sets

Topological semantics

For the GLPξ axioms to be valid in (X , (τα)α<ξ), the topologies τα have
to satisfy:

1 τα is scattered, all α < ξ.
2 τβ ⊆ τα, for all β ≤ α < ξ.
3 Dα(A) is an open set in τα+1, for all A ⊆ X .

Moreover, for GLPξ to be complete, one must also have:
4 The τα are non-trivial (i.e., non discrete).

So, one doesn’t have much choice on how to define the τα: One fixes a
scattered topology τ0 on X , and the other topologies are determined by
the Dα operators. One only needs to make sure the τα are non-trivial.

Such polytopological spaces are called general GLP-spaces.
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Introduction: derived topologies and hyperstationary sets

Ordinal GLP-spaces

Fix some limit ordinal δ (we also allow δ = OR).

Recall that the order topology on δ (a. k. a. the interval topology) is the
topology τ0 generated by the set B0 consisting of {0} and the intervals
(α, β).

τ0 is a Hausdorff scattered topology in which 0 and all successor ordinals
are isolated points, and the accumulation points are precisely the limit
ordinals.

Now define a continuous sequence of derived topologies

τ0 ⊆ τ1 ⊆ . . . ⊆ τξ ⊆ . . .

as follows:
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Introduction: derived topologies and hyperstationary sets

Derived Topologies

Given τξ, let Dξ : P(δ)→ P(δ) be the Cantor derivative operator:

Dξ(A) := {α ∈ δ : α is a limit point of A in the τξ topology}.

Note that Dξ(A) is a closed set in the τξ topology.

Then let τξ+1 be the topology generated by the set

Bξ+1 := Bξ ∪ {Dξ(A) : A ⊆ δ}.
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Introduction: derived topologies and hyperstationary sets

Derived Topologies

Notice that if the cofinality of α is uncountable and α ∈ D0(A), then
D0(A) ∩ α is a club subset of α.

The set B1 := B0 ∪ {D0(A) : A ⊆ δ} is a base for the topology τ1 on OR,
known as the club topology.

Note that the non-isolated points are exactly the ordinals of uncountable
cofinality.

Fact
For every set of ordinals A,

D1(A) = {α : A ∩ α is stationary in α}.
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Introduction: derived topologies and hyperstationary sets

Derived Topologies

The next topology, τ2, is generated by the set

B2 := B1 ∪ {D1(A) : A ⊆ OR}.

If some stationary subset S of α does not reflect (i.e., D1(S) = {α}), then
α is an isolated point of τ2. Thus, every non-isolated point α has to reflect
all stationary sets.

Further, if some stationary subsets S, T of α do not simultaneously reflect
(i.e., D1(S)∩D1(T ) = {α}), then α is an isolated point of τ2. Thus, every
non-isolated point has to reflect simultaneously all pairs of stationary sets.
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Introduction: derived topologies and hyperstationary sets

Stationary reflection

An ordinal α of uncountable cofinality reflects stationary sets if for every
stationary A ⊆ α there exists β < α such that A ∩ β is stationary in β.

Let us say that an ordinal α of uncountable cofinality is
simultaneoulsy-stationary-reflecting if every pair A,B of stationary subsets
of α simultaneously reflect, that is, there exists β < α such that A∩ β and
B ∩ β are both stationary in β.
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Introduction: derived topologies and hyperstationary sets

Jensen’s Theorem

It is easy to see that every weakly-compact cardinal (i.e., Π1
1-indescribable)

is simultaneously-stationary-reflecting.

Theorem (Jensen)
In the constructible universe L a regular cardinal κ reflects stationary sets
if and only if it is Π1

1-indescribable, hence if and only if it is
simultaneously-stationary-reflecting.a

aR. Jensen, The fine structure of the constructible hierarchy. Annals of
Math. Logic 4 (1972)

Thus, in L, the non-isolated points of the topology τ2 are precisely the
ordinals whose cofinality is a weakly-compact cardinal.
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Introduction: derived topologies and hyperstationary sets

Moreover,

Theorem (Magidor)
If κ is regular and reflects simultaneously pairs of stationary subsets, then
κ is a weakly compact cardinal in L.a

aM. Magidor, Reflecting stationary sets. JSL, Vol. 47, Num. 4 (1982)

It follows that the consistency strength of the non-triviality of τ2 is a
weakly compact cardinal.
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Introduction: derived topologies and hyperstationary sets

ξ-stationary sets

Definition

We say that A ⊆ δ is 0-stationary in α, α a limit ordinal, if and only if
A ∩ α is unbounded in α.
For ξ > 0, we say that A is ξ-stationary in α if and only if for every ζ < ξ,
every subset S of α that is ζ-stationary in α ζ-reflects to some β ∈ A, i.e.,
S ∩ β is ζ-stationary in β.

Note:
1 A is 1-stationary in α ⇔ A is stationary in α, in the usual sense.
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